Prof. Matthieu Bloch
Thursday, October 19, 2023
A \((n,M_n)\) code \(\calC\) for channel coding over a discrete memoryless source \(P_{Y|X}\) consists of an encoding function \(f_n:\{1,\cdots,M_n\}\to\calX^n\) and a decoding function \(g_n:\calY^n\to\{1,\cdots,M_n\}\)
For a discrete memoryless channel characterized by \(P_{Y|X}\), \(C = \max_{P_X}\mathbb{I}(X;Y)\)
Consider a generic channel \((\calU,P_{V|U},\calV)\) with message set \(\{1,\cdots,M\}\)
For \(\gamma>0\), let
\[\begin{align*} \calA_\gamma \eqdef \left\{(u,v)\in\calU\times\calV:\log\frac{P_{V|U}(v|u)}{P_V(v)}\geq\gamma\right\} \end{align*}\]
Encoder
Decoder: \(g\) is defined as follows. Upon receiving a channel ouptut \(v\):
For any \(\gamma>0\),
\[\begin{align*} \E[C]{P_e(C)} \leq \P[P_UP_{V|U}]{(U,V)\notin \calA_\gamma} + M2^{-\gamma}. \end{align*}\]
Consider a sequence of codes \(\set{(f_n,g_n)}_{n\geq 1}\) such that \(\lim_{n\to\infty}P_e^{(n)}=0\) and \(\lim_{n\to\infty}\frac{\log M_n}{n}\geq R\). Then \(R\leq \max_{P_X}\mathbb{I}(X;Y)\)